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been analyzed kinetically. The hapten 1 may be considered a 
multi-substrate analogue of the reaction, while its phosphonyl 
group also simulates the characteristics of a transition state. 
Antibodies may be useful in distinguishing these possible attributes 
of enzymatic inhibitors. In the first case, the antibody would be 
acting as an "entropy trap",15 while the weak binding of substrates 
and substrate analogues suggests it can selectively stabilize 
transition states. The poor binding of amides to mAb 17G8, as 
determined by inhibition experiments, may indicate that substrates 
bind in a destabilized conformation, requiring torsion about the 
scissile bond. The amide "resonance" makes this distortion en
ergetically more costly for amides than for esters.16 While 1 is 
not ideal as an analogue for the reaction investigated, the data 
show that antibody combining sites can accommodate two mol
ecules in a chemically reactive complex at concentrations typical 
of enzymatic catalysis.17 The precise mechanism of this reaction 
and the exploration of antibody catalysis for other bimolecular 
processes continue to be of interest in our investigations.18 
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Soc, Chem. Commun. 1988, 106. 
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Mechanisms of action of biological antioxidants are of wide
spread interest because oxidative damage has been implicated in 
many disease states.1 Shapiro et al. have suggested2 that the 
ovothiols (e.g., 1), a family of mercaptohistidines remarkably 
abundant (ca. 5 mM) in the eggs of marine invertebrates,23 

function as antioxidants. The presence in these eggs of both 
glutathione (ca. 2 mM)4 and ovothiols suggests the possibility that 
these thiols may possess distinct antioxidant activities. Though 
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the antioxidant activity of aliphatic thiols such as glutathione has 
been widely discussed,5 no comparison with aromatic thiols has 
been made.6 The observation7 that the 4-mercaptoimidazole 23d 

is at least 50-fold superior to glutathione in inhibiting the air 
oxidation of pyrogallol8 led us to investigate differences between 
the thiol functions of glutathione and 2; described herein are 
differences in protonation state, nucleophilicity, and one-electron 
donating ability that are relevant to the putative role of ovothiols 
as antioxidants. 

H3C H H3C 

1 2 

Relevant pA^ data were measured for 2, since thiol and thiolate 
functions differ in reactivity. Potentiometric titration of 2 in water 
afforded two macroscopic pK^s of 2.3 and 10.3; the S-methyl 
derivative of 2 yielded a single pKa of 6.O.9 Assuming that the 
latter is identical with pA"[m (Scheme I), the pATa's shown in Scheme 
I can be calculated.10 In sharp contrast to the thiol group of 
glutathione, pK^ 8.65," the p£a of the thiol of 2 is 2.3, implying 
that marine invertebrates are in fact 5 mM in a thiolate anion! 
These data indicate that 2 exists predominantly (~99.9%) as the 
zwitterion 2 (ImH+-S") at pH 7.12 

The predominance of an aromatic thiolate function in 2 at pH 
7 suggested that the 4-mercaptoimidazoles may be more nu-
cleophilic than glutathione. The relative nucleophilicity of 2 and 
glutathione in phosphate buffered water (pH 7) at 23 0C was 
measured by competition for a deficiency of iodoacetamide. 1H 
NMR analysis of the resulting mixture of thioethers indicated 
that the rate constants for thioether formation differ by a factor 
of 9 in favor of 2.13,14 These data are in qualitative agreement 
with the finding that at pH 7.2 ovothiol consumes hydrogen 
peroxide in a second-order process 5 times as quickly as does 
glutathione.2 

The most striking difference between 2 and glutathione is in 
the kinetics of its reactions as a one-electron donor, as might be 
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Figure 1. Reduction of ferricytochrome c with 2. (A) Plot of pseudo-
first-order rate constant (fcob8d) for the reduction of horse heart ferric
ytochrome c (Sigma, Type III, 8 MM at pH 6.0, 6.5, 7.5; 2 fiM at pH 
7.0, 8.0) by 2 vs [2] at 23 0C. Reactions were 0.10 mM in diethylene-
triaminepentaacetic acid, buffered (ionic strength 0.05) with 2-N-
morpholinoethanesulfonic acid (pH 6.0 and 6.5) or iV-2-hydroxyethyl-
piperazine-7V'-2-ethanesulfonic acid (pH 7.0, 7.5, and 8.0), monitored at 
550 nm for up to 2 half-lives. Rate constants were calculated from plots 
of In (/!„ - A,) vs time; Ax was obtained by reduction with Na2S2O4. (B) 
Plot of log second-order rate constant for reduction of ferricytochrome 
c by 2 vs pH. Data taken from (A). Indicated line is best line of slope 
1 through the data points. 

required of an antioxidant in the repair/destruction of free radicals. 
A preliminary survey indicated that 2 reacts at least one order 
of magnitude more rapidly than glutathione with several one-
electron acceptors, including Fremy's salt,15 Banfield's radical,16 

galvinoxyl radical,17 and horse heart ferricytochrome c. The latter 
system was investigated in some detail. 

The pseudo-first-order reaction of ferricytochrome c with excess 
2 was studied as a function of pH and [2]. Unlike glutathione, 
whose reactivity with ferricytochrome c is negligible,18 2 reacts 
with ferricytochrome c at an appreciable rate. 2 reacts in a process 
that is first order in each of the two starting materials (Figure 
IA). The second-order rate constant is strongly pH dependent 
in the range 6 to 8, a range in which the reduction potential of 
the cytochrome is known to be invariant;19 a plot of the log of the 
second-order rate constant vs pH (Figure IB) is linear with a slope 
of 1. Gel filtration afforded a 95% yield of the disulfide of 2, 
identified and quantified by UV. 

The simplest interpretation of the data in Figure 1 is that in 
the concentration range studied the mercaptoimidazole 2 reduces 
ferricytochrome c by outer-sphere single-electron transfer. The 
linearity of log k vs pH from pH 6 to 8 further indicates that the 
predominant reduction initiating species is the thiolate anion 2 
(Im-S"), not the zwitterion 2 (ImH+-S").20-21 If all reduced 
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cytochrome c is attributed to this pathway, a rate constant of 4 
X 104 M"1 s_1 can be estimated for the reaction of 2 (Im-S") with 
ferrocytochrome c.n We speculate that the superiority of 2 
(relative to glutathione) as a one-electron donor has its origin in 
the thermodynamic advantage of forming an aromatic rather than 
aliphatic thiyl radical.23 

In summary, the thiol groups of 2 and glutathione are chem
ically distinct. The mercaptoimidazole in solution at physiological 
pH is both more nucleophilic and more reactive as a one-electron 
donor, the latter despite the fact that the oxidation of 2 mole of 
thiol to one of disulfide is less favorable for ovothiol by 4 kcal.2a 

While generic differences between aliphatic and aromatic thiols 
account in part for these differences, the unusual pATa's of the thiol 
and imidazole functions are also important in fine tuning the 
chemical reactivity of the mercaptoimidazoles. The antioxidant 
activities of ovothiol and glutathione will likely be significantly 
different from one another; the ovothiols warrant further inves
tigation as biological antioxidants. 
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The availability of two adjacent coordination sites in bent 
tungstenocene complexes has resulted in the observation in this 
system of examples of many of the fundamental reactions of 
organometallic chemistry,4 and mechanistic studies of these re
actions would be facilitated by access to derivatives in which 
differentially substituted cyclopentadienyl ligands resulted in a 
prochiral or chiral metal center;5 "the most valuable single type 
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